Theopederins K and L. Highly Potent Cytotoxic Metabolites from a Marine Sponge Discodermia Species

Gopal K. Paul, Sarath P. Gunasekera,* Ross E. Longley, and Shirley A. Pomponi
Division of Biomedical Marine Research, H arbor Branch Oceanographic Institution, 5600 U.S. 1 North, Fort Pierce, Florida 34946

Received J uly 27, 2001

Theopederins K (1) and L(2) have been isolated from the marine sponge Discodermia sp. collected from Honduras. $\mathbf{1}$ and $\mathbf{2}$ showed in vitro cytotoxicity against P-388 and A-549 cell lines. The isolation, biol ogical activities, and structure elucidation of theopederins K (1) and L (2) are described.

Marine sponges belonging to the genus Discodermia are a promising source of diverse chemical metabolites having a variety of bioactivities. ${ }^{1}$ In a continuing search for new cytotoxic agents from the genus Discodermia, ${ }^{2-4}$ we have isolated two new natural products that showed remarkable cytotoxicity against P-388 murine leukemia and A-549 human lung adenocarcinoma cell lines. These cytotoxic agents, trivially named theopederin $K(\mathbf{1})$ and theopederin L (2), are 17-methoxy-6-hydroxy-18-en-theopederin G and 6-hydroxy-18-en-theopederin G, respectively, and have not been previously described in the literature. The structures were determined by a combination of NMR and mass spectral studies and by comparison with the NMR data of related compounds reported in the literature.

Pederin, ${ }^{5}$ the first compound of this class of toxic alkal oids, was reported from the beetle Paederus faucipes. Subsequently, the New Zealand ${ }^{6}$ and Harbor Branch groups ${ }^{7}$ reported mycalamide A and onnamide A from the sponges of the genus Theonella, respectively, in two consecutive publications. Later, F usetani's group in J apan reported eight related onnamides ${ }^{8}$ and 10 related theopederins ${ }^{9,10}$ from the sponges of the same genus Theonella. Recently, the same New Zealand group reported the mycalamides from the sponge genus Stylinos, ${ }^{11}$ another New Zealand group in Wellington reported mycalamide D from the genus Mycale, ${ }^{12}$ and an Australian group reported onnamide F from the genus Trachycladus. ${ }^{13}$ Here, we report the isolation of theopederins K and L from the sponge genus Discodermia. It is remarkable to note that natural products incorporating the pederin skeleton with minor variations have now been isolated from five genera of the marine sponges, Mycale and Stylinos belonging to the order Poecilosclerida, Trachycladus belonging to the order Axinellida, Theonella and Discodermia belonging to the order Lithistida, as well as the blister beetle Paederus fuscipes. The presence of a rare class of alkaloids in such taxonomically distinct organisms may indicate a possible microbial biogenetic origin.

Four samples of the sponge Discodermia sp. were collected from Honduras in November 1997 and stored at -20 ${ }^{\circ} \mathrm{C}$ until extraction. The EtOH extract of the thawed sponge was partitioned between EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The EtOAcsoluble fraction was chromatographed over Si gel with $\mathrm{CH}_{2}-$ $\mathrm{Cl}_{2}-\mathrm{MeOH}$ step gradient, and the fractions were monitored for cytotoxicity against P388 and A549 cell lines. The cytotoxic fraction that eluted with $50 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was re-partitioned between heptane and 20% aqueous MeOH .

[^0]The aqueous MeOH -soluble fraction on repeated reversedphase chromatography gave theopederin K (1) and theopederin L (2) as white amorphous powders.

HRFABMS of theopederin K (1) supported the molecular formula $\mathrm{C}_{32} \mathrm{H}_{49} \mathrm{NO}_{11}\left[(\mathrm{M}+\mathrm{Na})^{+} \mathrm{m} / \mathrm{z} 646.3188, \Delta 1.5 \mathrm{mmu}\right]$. The UV spectrum displayed characteristic absorption for a conjugated carbonyl moiety at $\lambda_{\max }(\mathrm{MeOH}) 254 \mathrm{~nm}$ (log $\epsilon 4.46$) as reported for theopederin G (4). ${ }^{10}$ IR spectral (KBr film) absorptions indicated the presence of hydroxyl (3387 cm^{-1}), an amide carbonyl ($1535 \mathrm{~cm}^{-1}$), and an acid carbonyl ($1680 \mathrm{~cm}^{-1}$) functionality. The ${ }^{1} \mathrm{H}$ NMR spectrum of theopederin K (Table 1) showed marked similarities to that of theopederin G^{10} (Table 2) but contained two additional methoxy signals observed at $\delta 3.09$ and 3.16 and two additional trans coupled ol efinic protons observed at $\delta 5.10$ (dd, 8.4, $15.4 \mathrm{~Hz}, \mathrm{H}-18$) and 5.67 (ddd, $6.5,6.6,15.4 \mathrm{~Hz}$, $\mathrm{H}-19)$. Analysis of the COSY spectrum indi cated that $\mathrm{H}-18$ is coupled to both $\mathrm{H}-19$ and $\mathrm{H}-17$ methoxy methine protons at $\delta 3.50$ (ddd, $3.2,8.4,10.1 \mathrm{~Hz}$). The doubly allylic methylene protons at $\delta 2.86(\mathrm{~m})$ are coupled to $\mathrm{H}-19$ on one side and to $\mathrm{H}-21$ at $\delta 6.01$ (dt, $6.6,15.0 \mathrm{~Hz}$) on the other side, which constitutes the conjugated trans-diene system. Analysis of the HMBC data (Table 1) confirmed that the three methoxy groups at $\delta 3.16,3.44$, and 3.09 are attached to C-6, -13, and -17, respectively, and the methylene group

Table 1. NMR Spectral Data for Theopederin $K(\mathbf{1})$ in $\mathrm{CD}_{3} \mathrm{OD}$

position	δ_{C}	δ_{H}, mult, J (Hz)	HMBC
2	70.9 (d)	3.82 (overlapped)	C-4, C-6, C-27
3	43.0 (d)	2.13 (ddq, 7.0, 2.3, 7.0)	C-5, C-28
4	148.0 (s)		
5	34.6 (t)	2.27 (ABq, 14.0)	C-28, C-7
6	101.3 (s)		
7	73.5 (d)	4.18 (s)	C-5
8	174.0 (s)		
10	75.3 (d)	5.56 (d, 8.5)	C-(10-O-C), C-8
11	70.2 (d)	3.81 (overlapped)	C-13, C-15
12	74.9 (d)	4.06 (dd, 9.1, 6.1)	C-10, C-(10-0-C)
13	81.1 (d)	3.41 (d, 9.1)	
14	41.6 (s)		
15	77.1 (d)	3.22 (d, 9.8)	C-11, C-13, C-17
16	36.2 (t)	$\begin{aligned} & 1.41(10.6,10.8) \\ & 1.61(\mathrm{~m}) \end{aligned}$	C-18, C-17
17	81.6 (d)	3.50 (ddd, 3.2, 10.1, 8.4)	C-(17-O-C)
18	132.3 (d)	5.10 (dd, 8.4, 15.4)	C-16, C-20
19	134.5 (d)	5.67 (ddd, 6.5, 6.6, 15.4)	C-17, C-21
20	36.4 (t)	2.86 (m)	C-18, C-22
21	139.8 (d)	6.01 (dt, 15.0, 6.6)	C-19, C-23
22	131.1 (d)	6.19 (dd, 15.0, 14.4)	C-20, C-24
23	142.6 (d)	7.04 (t, 14.4)	C-21, C-25
24	127.1 (d)	5.79 (d, 14.4)	C-22
25	175.9 (s)		
26	18.2 (q)	1.14 (d, 6.5)	C-3
27	12.6 (q)	0.90 (d, 7.0)	C-2
28	110.3 (t)	4.56 (s)	C-3, C-5
		4.73 (s)	C-3, C-5
14-M eq ${ }_{\text {eq }}$	24.1 (q)	0.88 (s)	C-13, C-15
$14-\mathrm{Meax}$	15.0 (q)	0.75 (s)	C-13, C-15
$10-\mathrm{OCH}_{2}$	87.2 (t)	4.70 (d, 7.0)	C-12, C-10
		5.04 (d, 7.0)	C-12, C10
$6-\mathrm{OCH}_{3}$	48.6 (q)	3.16 (s)	C-6
$13-\mathrm{OCH}_{3}$	61.8 (q)	3.44 (s)	C-13
$17-\mathrm{OCH}_{3}$	56.1 (q)	3.09 (s)	C-17

at $\delta 2.86(\mathrm{H}-20)$ is doubly allylic. Comparison of the NMR data (${ }^{1} \mathrm{H}$, and ${ }^{13} \mathrm{C}$) of the $\mathrm{C}-2$ to $\mathrm{C}-16$ subunit in $\mathbf{1}$ with the data reported for theopederin G (4) (Table 2) and the NMR data (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and NOE) reported for mycalamide A^{6} supported a common relative stereochemistry about the chiral centers within the subunit. The relative stereochemistry at C-17 was not determined. The presence of the terminal acid group in 1, as in theopederin G, was established by methylation with diazomethane to give the methy ester (3), and its structure was confirmed by NMR and mass spectral studies. The combination of the above data established the structure for theopederin K (1).

HRFABMS of theopederin L (2) supported the molecular formula $\mathrm{C}_{31} \mathrm{H}_{47} \mathrm{NO}_{11}\left[(\mathrm{M}+\mathrm{Na})^{+} \mathrm{m} / \mathrm{z} 632.3048, \Delta 0.1 \mathrm{mmu}\right]$. Theopederin L (2) was isolated from a more polar fraction, and it indicated a difference in elements CH_{2} (14 mmu) from theopederin K . The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR analysis revealed that theopederin $L(\mathbf{2})$ is similar to theopederin K (1), and the only notable exception was the presence of only two OMe signals (Table 2, $\delta_{\mathrm{H}} 3.23,3.53$; $\delta_{\mathrm{C}} 48.3,61.6$) as compared to the presence of three OMe signals ($\delta_{\mathrm{H}} 3.16$, $3.44,3.09 ; \delta_{C} 48.6,61.8,56.1$) in 1. Similarly, the ${ }^{1} H$ and ${ }^{13} \mathrm{C}$ spectra of $\mathbf{2}$ were almost identical to theopederin G (Table 2) with the significant difference being the presence of one more OMe group at $\delta 3.23$ and an additional isolated double ($\delta_{H} 5.40, \delta_{\mathrm{C}} 133.2 ; \delta_{\mathrm{H}} 5.68, \delta_{\mathrm{C}} 128.3$) in the side chain. The combination of these data assigned the two OMe groups to positions C-6 and C-13 and thus established the structure of theopederin L (2). The relativestereochemistry at C-17 was not determined.

Experimental Section

General Experiment Procedures. 1D and 2D NMR spectra were measured on a Bruker AMX-500 instrument. The

Table 2. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Data for Theopederin $\mathrm{L}(\mathbf{2})$ and Theopederin G (4)

position	theopederin L		theopederin G	
	$\delta_{C}{ }^{\text {a }}$	$\delta_{\mathrm{J}, \mathrm{mult}^{(\mathrm{Hz})^{\mathrm{b}}}}$	$\delta_{C}{ }^{\text {b }}$	$\delta_{j_{\mathrm{H}}, \text { mult }_{(\mathrm{Hz})^{\mathrm{b}}},}$
2	70.4 (d)	4.12 (m)	71.1 (d)	4.16 (m)
3	41.4 (d)	2.18 (m)	43.1 (d)	2.19 (m)
4	146.0 (s)		148.5 (s)	
5	33.4 (t)	2.41 (d, 14.0)	36.6 (t)	2.72 (d, 13.8)
		2.32 (d, 14.0)		2.10 (d, 13.8)
6	99.8 (s)		99.1 (s)	
7	73.2 (d)	4.23 (s)	71.1 (d)	3.94 (s)
8	172.4 (s)		175.2 (s)	
10	73.2 (d)	5.72 (m)	75.5 (d)	5.80 (d, 9.6)
11	69.5 (d)	3.98 (m)	71.1 (d)	$\begin{aligned} & 3.97 \text { (dd, 9.6, } \\ & 7.2 \text {) } \end{aligned}$
12	74.1 (d)	4.15 (m)	76.0 (d)	$\begin{aligned} & 4.17 \text { (dd, 10.2, } \\ & 7.2 \text {) } \end{aligned}$
13	79.3 (d)	3.60 (m)	80.7 (d)	3.67 (d, 10.2)
14	41.4 (s)		42.4 (s)	
15	79.1 (d)	3.55 (m)	78.9 (d)	3.43 (t, 6.6)
16	35.8 (t)	$\begin{aligned} & 1.60(\mathrm{~m}), 1.50 \\ & (\mathrm{~m}) \end{aligned}$	25.7 (t)	$\begin{aligned} & 1.50(\mathrm{~m}), 1.50 \\ & (\mathrm{~m}) \end{aligned}$
17	73.3 (d)	3.85 (m)	71.3 (d)	3.63 (m)
18	133.2 (d)	$\begin{aligned} & 5.40 \text { (dd, 15.4, } \\ & 6.5 \text {) } \end{aligned}$	36.7 (d)	$\begin{aligned} & 1.28(\mathrm{~m}), 1.48 \\ & (\mathrm{~m}) \end{aligned}$
19	128.3 (d)	5.68 (m)	37.1 (d)	$\begin{aligned} & 1.58 \text { (m) } \mathrm{m}), 1.44 \\ & \text { (m) } \end{aligned}$
20	35.1 (t)	2.93 (m)	34.0 (t)	$\begin{aligned} & 2.33(\mathrm{~m}), 2.18 \\ & (\mathrm{~m}) \end{aligned}$
21	138.4 (d)	6.25 (m)	146.7 (d)	$\begin{aligned} & 6.20 \text { (dt, 15.6, } \\ & 8.4) \end{aligned}$
22	129.8 (d)	6.32 (m)	130.6 (d)	$\begin{aligned} & 6.29 \text { (dd, 15.6, } \\ & 10.8 \text {) } \end{aligned}$
23	141.7 (d)	$\begin{aligned} & 7.27 \text { (dd, 15.3, } \\ & 10.2 \text {) } \end{aligned}$	147.8 (d)	$\begin{aligned} & 7.25 \text { (dd, 15.0, } \\ & 10.2 \text {) } \end{aligned}$
24	128.3 (d)	5.82 (d, 15.3)	121.2 (d)	5.80 (d, 15.0)
25	168.8 (d)		170.6 (s)	
26	17.7 (q)	1.17 (d, 6.9)	18.2 (q)	1.07 (d, 6.6)
27	11.7 (q)	1.00 (d, 6.7)	12.0 (q)	1.00 (d, 7.2)
28	109.9 (t)	$4.75,4.64 \text { (br, }$	110.6 (t)	4.68 (br s)
29	23.0 (q)	0.97 (s)	23.1 (q)	0.99 (s)
30	13.5 (q)	0.85 (s)	14.0 (q)	0.85 (s)
$10-\mathrm{OCH}_{2}$	86.6 (t)	4.86 (d, 6.8)	88.2 (t)	4.78 (d, 7.2)
		5.18 (d, 6.8)		5.22 (d, 7.2)
$6-\mathrm{OMe}$	48.3 (q)	3.23 (s)		
13-OMe	61.6 (q)	3.53 (s)	62.1 (q)	3.56 (s)

a Measured in $10 \% \mathrm{CD}_{3} \mathrm{OD}-\mathrm{CDCl}_{3}$. ${ }^{\text {b }}$ Measured in $\mathrm{CD}_{3} \mathrm{OD}$.
${ }^{1} \mathrm{H}$ NMR chemical shifts (referenced to $\mathrm{CD}_{3} \mathrm{OD}$ observed at 3.30 ppm or CDCl_{3} observed at 7.24 ppm) were assigned using a combination of data from COSY and HMQC experiments. Similarly, ${ }^{13} \mathrm{C}$ NMR chemical shifts (referenced to solvent) were assigned on the basis of DEPT and HMQC experiments. UV spectra were measured with a Hitachi U-3010 spectrophotometer. IR spectra were obtained on a Midac M-1200 with Galactic GRAMS/386 software. Optical rotations were recorded on a J asco DIP-360 digital polarimeter. The HRMS were obtained on a Finnigan MAT95Q mass spectrometer at the Spectroscopic Services Group, University of Florida, Gainesville, FL.

Animal Material. The sponge samples (HBOI \#s 16-XI-97-1-005, 19-XI-97-3-002, 20-XI-97-1-002, 20-XI-97-1-003) were collected in November 1997 by manned submersible off the north coast of Honduras (latitude $16^{\circ} 24.847^{\prime} \mathrm{N}$; longitude $85^{\circ} 58.575^{\prime} \mathrm{W}$, depth 121 m ; latitude $16^{\circ} 25.342^{\prime} \mathrm{N}$; longitude $85^{\circ} 58.477^{\prime} \mathrm{W}$, depth 122 m ; latitude $16^{\circ} 25.394^{\prime} \mathrm{N}$; longitude $85^{\circ} 58.397^{\prime} \mathrm{W}$, depth 125 m ; latitude $16^{\circ} 25.394^{\prime} \mathrm{N}$; longitude $85^{\circ} 58.397^{\prime} \mathrm{W}$, depth 125 m , respectively). The morphology of the sponge varies from club-shaped to lobate to knob-shaped. It is firm in consistency. The col or is cream with tinges of pink or brown when alive, fading to white when preserved in EtOH. The spicule skeleton consists of desmas, discotriaenes, oxeotes, microxea, and acanthose microrhabds, as described in the literature. ${ }^{14}$ Taxonomic reference samples have been deposited in the Harbor Branch Oceanographic Museum, catalog num-
bers 003:00977 (16-XI-97-1-005), 003:00978 (19-XI-97-3-002), 003:00979 (20-XI-97-1-002), and 003:00980 (20-XI-97-1-003).

Extraction and Isolation. The sponges were combined (5.6 kg), extracted in EtOH, and concentrated to give a pale brown EtOH extract. The EtOH extract was partitioned between EtOAc (1 L) and $\mathrm{H}_{2} \mathrm{O}(3 \times 2 \mathrm{~L})$. The EtOAc-soluble fraction ($\sim 7.0 \mathrm{~g}$) was column chromatographed over Si gel (350 g, 230-400 mesh) using a $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ step gradient, and the fractions were monitored for cytotoxicity against the P-388 murine leukemia cell line. The cytotoxic fraction that eluted with $50 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.44 \mathrm{~g})$ was partitioned between heptane ($3 \times 200 \mathrm{~mL}$) and 20\% aqueous methanol (50 mL). The aqueous MeOH -soluble fraction (1.09 g) was column chromatographed over reversed-phase C_{18} using an $\mathrm{H}_{2} \mathrm{O}-$ MeOH step gradient. The cytotoxic fractions that eluted with $40-60 \% \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ were combined and further purified by reversed-phase HPLC (VYDAC, $\mathrm{C}_{18}, 5 \mu \mathrm{~m}, 250 \times 10 \mathrm{~mm}$) with $40 \% \mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$, which gave theopederin K (1) $(21.9 \mathrm{mg}$, yield, 0.00039% wet $w t$) and theopederin $L(2)(1.0 \mathrm{mg}$, yield, 0.000018% wet wt).

Theopederin K (1): $[\alpha]^{21} \mathrm{D}+90.3^{\circ}\left(\mathrm{c} 0.43, \mathrm{CH}_{3} \mathrm{OH}\right)$; UV $(\mathrm{MeOH}) \lambda_{\text {max }}(\log \epsilon) 254$ (4.46), 202 (4.23) nm; IR (neat) $v_{\text {max }}$ 3387, 2971, 1680, 1535, 1109, $1023 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Table 1; HRFABMS (3-nitrobenzyl alcohol) m/z 646.3188, $\Delta 1.5 \mathrm{mmu}$ for $\mathrm{C}_{32} \mathrm{H}_{49} \mathrm{NO}_{11} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$.

Theopederin L (2): $[\alpha]^{21} \mathrm{D}+34.0^{\circ}$ (c $0.05, \mathrm{CH}_{3} \mathrm{OH}$); UV $(\mathrm{MeOH}) \lambda_{\max } 260(\log \epsilon) 260(4.10), 202(4.07) \mathrm{nm} ;$ IR (neat) $v_{\max } 3429,2977,1701,1528,1109,1028 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Table 1; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.98(1 \mathrm{H}, \mathrm{J}=2.6,6.4$ $\mathrm{Hz}, \mathrm{H}-2), 2.22(1 \mathrm{H}, \mathrm{J}=2.6,7.1 \mathrm{~Hz}, \mathrm{H}-3), 2.36(2 \mathrm{H}, \mathrm{ABqJ}=$ 15.3, H-5), 4.28 (1H, s, H-7), 7.47 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.5 \mathrm{~Hz}, \mathrm{NH}-9$), $5.85(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.5,9.6 \mathrm{~Hz}, \mathrm{H}-10), 3.85(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.6,6.6$ $\mathrm{Hz}, \mathrm{H}-11$), 4.20 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.5,6.6 \mathrm{~Hz}, \mathrm{H}-12$), $3.43(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $=9.5 \mathrm{~Hz}, \mathrm{H}-13), 3.59(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.3,5.8 \mathrm{~Hz}, \mathrm{H}-15), 1.55$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-16$), $4.11(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=5.8,6.5 \mathrm{~Hz}, \mathrm{H}-17), 5.43(1 \mathrm{H}$, dd, J $=15.4,6.5 \mathrm{~Hz}, \mathrm{H}-18), 5.66(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=15.4,6.4 \mathrm{~Hz}$, $\mathrm{H}-19), 2.89(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4, \mathrm{H}-20), 6.15(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=15.4,6.4$ $\mathrm{Hz}, \mathrm{H}-21), 6.20(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.3,10.2 \mathrm{~Hz}, \mathrm{H}-22), 7.30(1 \mathrm{H}$, dd, J = 15.3, 10.2 Hz, H-23), 5.79 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.3 \mathrm{~Hz}, \mathrm{H}-24$), $1.18(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, \mathrm{H}-26), 1.01(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{H}-27)$, 4.72 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-28$), 4.86 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-28$), 0.97 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{eq}}-14$), 0.86 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{\mathrm{ax}}-14$), 4.83 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}-10$), 5.12 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{O}-10$), 3.29 ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeO}-6$), 3.54 (3 H , s, MeO-13); HRFABMS (3-nitrobenzyl alcohol) m/z 632.3048, $\Delta 0.1 \mathrm{mmu}$ for $\mathrm{C}_{31} \mathrm{H}_{47} \mathrm{NO}_{11} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$.

Preparation of Theopederin K Methyl Ester (3). Theopederin $\mathrm{K}(2 \mathrm{mg})$ in $\mathrm{MeOH}(0.5 \mathrm{~mL})$ was treated with an excess of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in ether in an ice bath for 2 h . The reaction mixture was dried under a stream of nitrogen, and the resulting residue on purification by HPLC (Lichrosorb $5 \mu, \mathrm{SiO}_{2}, 250 \times 10 \mathrm{~mm}$ column) using $3 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave pure theopederin K methyl ester (3) (1.6 mg): $[\alpha]^{21} \mathrm{D}+69.6^{\circ}\left(c 0.08, \mathrm{CH}_{3} \mathrm{OH}\right.$); UV $(\mathrm{MeOH}) \lambda_{\text {max }}(\log \epsilon) 262(4.28), 203(4.27) \mathrm{nm}$; IR (neat) $v_{\text {max }}$ 3350, 2980, 1688, 1528, 1380, 1131, $1084 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3}-$ OD) $\delta 3.92$ (1 H , overlapped, H-2), 2.21 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), $2.36(2 \mathrm{H}$, $A B q, J=14.1 \mathrm{~Hz}, \mathrm{H}-5), 4.25(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-7), 5.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.9$ $\mathrm{Hz}, \mathrm{H}-10$), 3.89 (1 H , overlapped, $\mathrm{H}-11$), 4.14 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.3$, $9.2 \mathrm{~Hz}, \mathrm{H}-12), 3.48(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.2 \mathrm{~Hz}, \mathrm{H}-13), 3.26(1 \mathrm{H}$, overlapped, H-15), 1.47 (1H, m, H-16), 1.69 (1H, m, H-16), 3.55 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-17$), 5.22 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=15.6,8.4 \mathrm{~Hz}, \mathrm{H}-18$), $5.74(1 \mathrm{H}$, $\mathrm{dt}, \mathrm{J}=15.6,6.6, \mathrm{H}-19), 2.98(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-20), 6.28(1 \mathrm{H}$, overlapped, H-21), 6.34 (1H , overlapped, H-22), 7.32 (1H, dd,
$\mathrm{J}=10.2,15.4 \mathrm{~Hz}, \mathrm{H}-23), 5.88(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.4 \mathrm{~Hz}, \mathrm{H}-24), 1.18$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, \mathrm{H}-26$), 0.98 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{H}-27$), 4.64 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-28$), 4.85 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-28$), 0.96 (3H, s, Meeq-14), 0.83 (3H, s, Meax-14), 4.78 ($1 \mathrm{H}, \mathrm{d}$, J $=6.8 \mathrm{~Hz}, \mathrm{OCH}-10$), 5.12 (1H, d, J = $6.8 \mathrm{~Hz}, \mathrm{OCH}-10$), 3.16 (3H, s, MeO-17), 3.25 (3H, s, MeO-6), 3.51 (3H, s, MeO-13), 3.70 (3H , s, MeO-25); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 125.7 \mathrm{MHz}$) $\delta 70.9$ (d, C-2), 43.0 (d, C-3), 148.0 (s , C-4), 34.7 (t, C-5), 101.3 (s, C-6), 73.7 (d, C-7), 174.2 (s, C-8), 75.2 (d, C-10), 70.2 (d, C-11), 75.0 (d, C-12), 81.0 (d, C-13), 41.7 (s, C-14), 77.0 (d, C-15), 36.5 (t, C-16), 81.6 (d, C-17), 132.7 (d, C-18), 134.1 (d, C-19), 36.1 (t, C-20), 143.7 (d, C-21), 130.3 (d, C-22), 146.6 (d, C-23), 120.4 (d, C-24), 169.3 (s, C-25), 18.1 (q, C-26), 12.5 (q, C-27), 110.3 (t, C-28), 24.0 (q, M eeq-14), 14.9 (q, $\mathrm{Me}_{\mathrm{ax}}-14$), 87.2 ($\mathrm{t}, \mathrm{OCH}_{2}-10$), 48.5 ($\mathrm{q}, \mathrm{MeO}-6$), 61.8 ($\mathrm{q}, \mathrm{MeO}-$ 13), 56.1 (q, MeO-17) and 52.0 (q, MeO-25); HRFABMS (3nitrobenzyl al cohol) m/z 660.3352, $\Delta 0.8 \mathrm{mmu}$ for $\mathrm{C}_{33} \mathrm{H}_{51} \mathrm{NO}_{11^{-}}$ $\mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$.

Cytotoxicity Assay. Compounds 1, 2, and $\mathbf{3}$ exhibited in vitro cytotoxicity against the cultured murine P-388 tumor cell line, with IC_{50} values of $0.1,7.3$, and 0.3 nM and the human lung adenocarcinoma A-549 cell line, with IC_{50} values of 1.5, 3.2 , and 0.8 nM , respectively. ${ }^{15,16}$

Acknowledgment. We thank Patricia Linley for her assistance with the cytotoxicity assays. We also thank Dr. David Powell of the University of Florida, Gainesville, for the HRFABMS measurements. This research was funded by a grant from the National Institute of Health/National Cancer Institute RO1-CA 74227. This is Harbor Branch Oceanographic Institution contribution no. 1454.

References and Notes

(1) Faulkner, D. J. J. Nat. Prod. Rep. 2001, 18, 1-49, and references therein.
(2) Gunasekera, S. P.; Gunasekera, M.; Longley, R. E.; Schulte, G. K. J . Org. Chem. 1990, 55, 4912-4915. (correction: 1991, 56, 1346).
(3) Gunasekera, S. P.; Gunasekera, M.; McCarthy, P. J . Org. Chem. 1991, 56, 4830-4833.
(4) Gulavita, N. K.; Gunasekera, S. P.; Pomponi, S. A.; Robinson, E. V. J. Org. Chem. 1992, 57, 1767-1772.
(5) Matsumoto, T.; Yanagiya, M.; Maeno, S.; Y asuda, S. Tetrahedron Lett. 1968, 6297-6300.
(6) Perry, N. B.; Blunt, J. W.; Munro, M. H. G.; Pannell, L. K. J . Am. Chem. Soc. 1988, 110, 4850-4851.
(7) Sakemi, S.; Ichiba, T.; Saucy, G.; Higa, T. J . Am. Chem. Soc. 1988, 110, 4851-4853.
(8) Matsunaga, S.; Fusetani, N.; Nakao, Y. Tetrahedron 1992, 48, $8369-$ 8376.
(9) Fusetani, N.; Sugawara, T.; Matsunaga, S. J . Org. Chem. 1992, 57, 3828-3832.
(10) Tsukamoto, S.; Matsunaga, S.; Fusetani, N.; Toh-e, A. Tetrahedron 1999, 55, 13697-13702.
(11) Simpson, J. S.; Garson, M. J.; Blunt, J. W.; Munro, M. H. G.; Hooper, N. A. J. Nat. Prod. 2000, 63, 704-706.
(12) West, L. M.; Northcote, P. T.; Hood, K. A.; Miller, J. H.; Page, M. J . J. Nat. Prod. 2000, 63, 707-709.
(13) Vuong, D.; Capon, R. J .; Lacey, E.; Gill, J . H.; Heiland, K.; Friedel, T. J. Nat. Prod. 2001, 64, 640-642.
(14) van Soest, R. W. M.; Stentoft, N. Barbados Deep-water Sponges: Studies on the Fauna Curacao and other Caribbean Islands, 1988; Vol. 70, pp 50-52.
(15) Gunasekera, S. P.; Longley, R. E.; Paul, G.; Isbrucker, R. I.; Pomponi, S. A. serial number 09/835,692, U.S. Patent filed on April 20, 2001.
(16) Theopederins K and L were initially named as discalamides A and B, respectively, in the U.S. Patent application. Compounds were renamed to be consistent with the theopederin $\mathrm{F}-\mathrm{J}$ series.
NP0103766

[^0]: * To whom correspondence should be addressed. Tel: 561-465-2400 Fax: 561-461-2221. E-mail: sgunaseker@hboi.edu.

